



Abstract— Our goal is to study collaborative working
environments in which human and robotic agents can work
together in the achievement of different tasks. The introduction
of robots in the field of space applications becomes really useful
when performing tasks that are too dangerous, too difficult or
even impossible for humans. In this paper we present a
teleoperation system for interacting with a humanoid robot in a
space environment. A “lunar scenario” was built in which the
HOAP-3 humanoid robot is able to detect and manipulate
objects, with the help of a human operator. A human machine
interface (HMI) and a high level command protocol have been
developed for the teleoperation of the robot. The HMI allows
an operator to control the robot movements and visualize the
environment from robot cameras.

I. INTRODUCTION

ith the growth of robotics there has been a great
progress in space exploration. For a long time, mobile
robots have been used to explore and research other

planets; the twin rovers Spirit [1] and Opportunity [2] have
been employed satisfactorily to perform a geological
analysis on Mars surface, as it has been for many other
vehicles like Mars 2 and 3 of the Soviet Union or the
Surveyor rover of NASA [3].

Future space human missions will aim at colonizing and
inhabiting other planets. Therefore, it will be necessary to
find out solutions for the construction of permanent habitats
or research labs and perform tasks, such as the initial
communication systems setup, that expose humans to
dangerous environments. In order to support such activities,
we will require designing robots that are able both to
collaborate and interact with humans sharing the same
working environment and even to substitute them in
dangerous situations. Humanoid robots are suitable for these
duties because they are able to interact with the environment
using the same tools designed for humans.

One example of a humanoid robot specifically created to
perform tasks in the space is Robonaut [4], developed by
NASA and DARPA, whose anthropomorphic appearance
facilitates teleoperation. This robot has been created to assist
astronauts during space walks and it is able to handle extra-
vehicular activity (EVA) tools and geologic.

Manuscript received March 23, 2009. This work was supported in part

by the European Commission under FP6-2005-IST5.
P. P., D. H., M. G. and C. B. Authors are with Universidad Carlos III de

Madrid, Avda Universidad 30, 28911, Leganés, Madrid, Spain, (e-mail:
{ppierro, mgpalaci, dhernandez, balaguer}@ing.uc3m.es).

L. B. and A. M. Authors are with Hewlett-Packard Italy Innovation
Center, via Grandi 4, 20063 Cernusco sul Naviglio (MI), Italy (e-mail:
{lorenzo.blasi, andrea.milani}@hp.com).

Fig. 1. Teleoperation system.

HRP-2 humanoid robot is another example of a robot that

can cooperate with humans [5]. This robot is able to
manipulate objects under the orders of a human [6] and also
to assemble a panel cooperatively with a human [7]. ASIMO
 [8] can perform tasks like serving drinks, pushing a cart or
taking tools from a table. Other robots with similar
characteristics are Wabian-2 [9], Khr-2 [10] or Reem-B
 [11].

Humans and robots can collaborate in several ways, as
presented in [12]. In [13] a personal digital assistant (PDA)
interface has been designed to control a small doll-shape
robot; in [14] and [15] a handheld interface is used to
perform remote driving.

This paper deals with the collaboration between
humanoid robots and humans in order to achieve tasks in
space environments. In this research we use the robot
HOAP-3 teleoperated by a human agent.

The small humanoid robot “HOAP-3” is about 60cm high
and its weight is about 8 Kg, so that it becomes quite easy to
control and move while maintaining the whole stability.

The robot is able to explore the surroundings and detect
an object that is placed in the scenario. The robot can go
towards the object and take it. A human machine interface
(HMI) and a high level command protocol have been
designed to help the operator in moving the robot. As a
control device we use a lightweight and portable tablet pc.
The system is presented in Fig. 1.

The content of this paper is divided in six sections. In
Section II we describe the scenario built for the experiment.
The control architecture used in the robot is exposed in
Section III. The HMI developed to move the robot is
presented in Section IV and the command protocol is deeply
described in Section V. The experimental results are

Humanoid teleoperation system for space environments

Paolo Pierro, Student Member, IEEE, Daniel Hernández, Miguel González-Fierro, Lorenzo Blasi,
Andrea Milani and Carlos Balaguer, Member, IEEE

W

Robot network

Bidirectional communication

depicted in Section VI. The conclusions are in Section VII.

II. DESCRIPTION OF THE SCENARIO

A scenario has been designed to simulate a lunar ambient.
It consists on a long corridor surrounded by cliffs where the
robot can walk and interact with the environment. In Fig. 2
it can be seen a 3D recreation of the scenario. A similar
model has been built at Carlos III University to recreate the
moon surface.

The surface of the cliffs has been built with planes of
polystyrene where it has been made holes to simulate
craters. The floor of the scenario has been made of hard
cardboard as the robot has to walk on it. To paint it, we have
used a uniform grey to avoid interferences in the vision of
the robot.

This scenario allows the human operator to interact with
the robot. Through teleoperation and using the HMI, human
gives the humanoid the order of walk until it sees an object
that simulates a satellite dish. The robot detects this object
and then the operator orders the robot to grip the object and
move it.

III. CONTROL OF THE HOAP-3 ROBOT

The Hoap-3 robot is provided with an internal PC
operating in RT-Linux, which can communicate with other
PCs via wireless network.

The control strategy is presented in Fig. 3. In such a
scheme, several blocks have to be considered. Once that a
command has been received, the robot distinguishes if it is a
command for the walking generation or for the arms
movement.

The walking patterns of the robot have been designed
basing on the theory of the 3D Linear Inverted Pendulum
Mode presented in [16].

Different trajectories were simulated in Matlab and
Simulink® using kinematical and dynamical information of
the robot. Different trajectories have been tried with the real
platform: going forward, backward, turn left and right with a
specified angle. Some simulation results are in Fig. 4.

The posture stability control has not been implemented
yet, but several studies are being done in order to

Arm
trajectory
generation

Walking
patterns

Robot
Hoap‐3

Posture
stability
control

Selection of
grasping
arm

Received
command

Fig. 3. Control strategy.

0 5
-50

0

50

100

1

[s]

[º
]

0 5
-40

-20

0

20

40

2

[s]

[º
]

0 5
-100

-50

0

50

100

3

[s]

[º
]

0 5
-150

-100

-50

0

50

4

[s]
[º

]

0 5
-100

-50

0

50

100

5

[s]

[º
]

0 5
-40

-20

0

20

40

6

[s]

[º
]

Fig. 4. Joints positions of Hoap-3 right leg in walking forward trajectory.
The blue lines represent the joint trajectories. These positions are ensured to
be within the red lines which represent joints mechanical limits.

accomplish it [12].

If the received command requires a movement of the
arms, as in the case of a grasping task, the first problem to
be considered is the selection of the suitable arm. This is the
goal of the “Selection of the grasping arm” block. The arm
to be moved can be selected as the one which can reach the
object, but in several cases both arms can achieve this aim.
In this case, our present research is focused in choosing the
arm that can reach the object with higher manipulability.

Finally, the trajectory of the arm is evaluated online
through the algorithm of kinematic inversion presented in
 [18], once that the command provides the distance and the
orientation from the object. The orientation reference for the
object is calculated with the support of the unit quaternion
presented in [19].

IV. THE HUMAN-MACHINE INTERFACE

An HMI was developed for the teleoperation of the robot
HOAP-3 in the lunar scenario. Using the HMI a human
agent can work collaboratively with the robot in the
achievement of the proposed tasks.

The HMI allows an operator to see the environment from
the robot cameras, as well as to control various movements
of the robot and give orders for doing some tasks, e.g. “grab
object”.

The HMI provides several functionalities to the human
agent working with the robot:
 video feedback from robot cameras and visual cues of

Fig. 2. Recreation of the lunar scenario

object recognition;
 control movement of the robot head (pan and tilt);
 control walking and turning movements of the robot.
 command the robot to perform higher order task, such

as go to specific location, grab object or drop object.
 communication feedback with a log of the commands

between operator and robot.

The developed HMI is shown in Fig. 5.

Fig. 5. The HMI for teleoperation of robot HOAP: On the left there is the
video panel and the head movements controls. On the right side of the HMI
there is the communication configuration panel. On the bottom side there is
the ‘connect’ button and the communication log. On the center wheel of the
HMI there are the walking and turning movements’ controls and the higher
order command buttons, ‘Go to object’, ‘Grab’ and ‘Drop’.

We have improved the HMI from previous versions. In

Fig. 6 we compare the HMI developed for this task with the
previous interface. A more intuitive interaction between the
user and the interface was one goal in the redesign of the
HMI. A new panel layout improves the usability of the
system. The new interface also improves feedback to the
operator with a log of the received and performed
commands. The look and feel has also been improved.

Fig. 6. Comparison between the HMI developed for the teleoperation
system and previous version of HMI. The functions and buttons of the HMI
have been redistributed to improve usability. Greater functionality has been
added.

The developed HMI greatly improves the usability from

the previous interface and provides the operator with added
functionality. The goal of the HMI is to have a platform for
communication with the robotic system in working
environments that allows the operator to give the robot
direct action commands like “grab an object”, “go to a
place” or “move number of steps”. Several of these orders

were implemented but further effort needs to be done for
increasing the number of actions the robot can perform.

The HMI should also give to the operator more feedback
from the robot environment and the state of the robot
actions.

In the case of spatial applications, several problems have
to be issued. Planet rotations may cause troubles in
communications: in fact, due to the rotation, the object can
get out of the line of sight.

The other main problem is the time delay. For a moon-
earth communication the delay could be around 3 seconds
and for mars-earth communication the delay could be up to
10 minutes, as the time delay increases with the distance
from the earth [17]. In order to simulate the conditions and
problems that arise in a real space communications
application, a controllable time delay module has been
added to the HMI. This module will permit to set a variable
delay and to test the performance of the proposed
teleoperated system in space environments.

V. THE COMMAND PROTOCOL

In order to control the robot we designed a Robot
Command Protocol (RCP). Design goals for the protocol
are: simplicity, generality, flexibility and expressiveness.
The protocol should be simple in that no unneeded features
should be added; the protocol should be general and flexible
enough to be used for several use cases without
modifications. A powerful characteristic that leads to both
flexibility and expressiveness can be identified as
orthogonality, which can be achieved by clearly separating
disconnected functionalities while at the same time allowing
their combination without unneeded constraints. RCP is a
text-based protocol which has its roots in Unix protocols
like SMTP or FTP. Each RCP command is a text string
terminated by a newline character. Using text commands has
several advantages. First of all the resulting protocol is
simple to understand and implement; this means that support
for robot control can also be easily added to programs
different from our HMI. Moreover, the protocol is
lightweight; since the robot has limited computational
resources that can be dedicated to command parsing, this
was an important design goal. Finally, the human-readable
text commands make debugging easy. Communication
traces can be understood immediately and you can even do
simple tests by typing commands directly in a telnet session.
Our protocol is concerned with application-level
communication only; we assume that a reliable channel (in
our case a TCP/IP connection) is used for transmission. The
protocol is also general in that it hasn’t been designed for a
specific target robot, but for a generic target robot described
by a high-level robot model.

RCP was originally defined in [20] and can be
decomposed into several sub-protocols. Each sub-protocol
contains a set of commands used for a single purpose. The
list of RCP sub-protocols is shown in Table I.

One can start and end a communication with the robot
using the connection sub-protocol. Once connected, you can
use any of the other sub-protocols, for example the sensor
reading sub-protocol, which allows operator access to the
output of robot sensors.

In order to execute some commands the robot needs to
know its current position in a cartesian coordinate system.
However without a GPS receiver, even if the robot knows its
initial position and updates it according to its movements,
the resulting position is just an estimate which gets more and
more inaccurate as the robot moves. The positioning sub-
protocol defines how the robot and the operator can
dialogue about the robot’s position and collaborate to
improve its accuracy: the operator and the robot can both
ask for the current robot’s position or give a value for it.

The subprotocols summarized so far could be used by
multiple users connected to the robot at the same time, since
they are mostly composed of query commands, but other
sub-protocols which really control robot movements need
exclusive access to it. Thus it is necessary for the operator to
acquire a sort of “exclusive lock” using the control
negotiation sub-protocol before issuing action commands.
This ensures only one user at a time can control the robot.
Once a user has acquired exclusive control over the robot,
she can use the basic movement sub-protocol to translate or
rotate it.

The generic robot model includes a command queue,
where commands are inserted before being executed. So,
even if commands are sent by the user before the current
movement has been completed, they are put into the queue
and executed sequentially. However, while the robot is
moving the user may notice she has made a mistake (e.g. the
robot is going too far away) and want to stop the robot
immediately, without waiting for all commands in the queue
to complete. This is a situation in which the direct command
execution sub-protocol is useful, because it allows sending a
command which is executed immediately, bypassing the
queue. For example our user will issue the command

DIRECT STOP

The robot executes the STOP command immediately. It
terminates the current movement by reaching the nearest
stable position, clears out the queue and sends a reply to the

user.
The DIRECT command described above is a good

example of orthogonality because it can be combined with
any other command, used as a parameter, to make it bypass
the queue. Also the STOP command is orthogonal because it
can be used to terminate any command, not only
movements.

The reply sent by the robot after executing the STOP
command is:

OK COMMAND <cmd_id> INTERRUPTEDBY <cmd_id>

Note from the above line that IDs are used to refer to
commands. Every command is assigned an ID by its receiver
(i.e. the robot or the HMI). Then the receiver sends the
counterpart a reply indicating whether the command has
been accepted or not. Successful replies always start with
“OK”, while unsuccessful ones start with “KO”.

The basic movement sub-protocol defines a general
MOVE command with the following structure:

MOVE <movement_type> <direction> <count> <unit>

Currently three flavors of the command are supported:

MOVE WALKING [FORWARD|BACKWARD] <count> STEPS
MOVE TURNING [LEFT|RIGHT] <count> DEGREES
MOVE HEAD [UP|DOWN|LEFT|RIGHT] <count> DEGREES

The MOVE command is a good example of the flexibility
of our protocol, in that its structure allows adding new
movement types easily. For example we could add a new
BOWING movement.

As movements are not an instant action, the robot sends
multiple replies in response to a MOVE command:

OK COMMAND <command_id> QUEUED
OK COMMAND <command_id> STARTED
OK COMMAND <command_id> COMPLETED

The first reply is sent as soon as the command is accepted;
the second one when the command is considered for
execution and the third one after the movement has been
completed.

Robot movements depend on parameters such as speed
and step length. These (and other) parameters can be read or
set via the configuration sub-protocol.

A more advanced way of controlling robot’s movements
is the one defined in the goal-setting sub-protocol. When the
user knows the exact position where the robot must go, she
can define it as a target position and send it to the robot. In
the current implementation the route to the target position is
autonomously determined by the robot navigation module.

The protocol allows defining the robot’s target position in
two ways; one is to define the position with a pair of
coordinates, while the other is to indicate an object as a
target.

The relevant command is GOTO, which is shown below
in its two variants:

GOTO OBJECT(<object_id>)
GOTO <x> <y>

TABLE I
RCP SUB-PROTOCOLS

Name Number of commands

Connection 2
Control negotiation 2

Basic movement 3
Direct command execution 1
Configuration 2
Sensor reading 1
Positioning 2
Notification tbd
Goal-setting 1
Object grabbing 2
Strategy selection 2

Note that if the target position is occupied by an object
the robot cannot stop exactly there; in this case the robot
stops within a certain range (defined by a configuration
parameter) from the target.

The same target-object specification of the goal-setting
sub-protocol is used also in the object grabbing sub-
protocol. In order to tell the robot to grab or drop an object
the user issues the commands:

GRAB OBJECT(<object_id>)
DROP OBJECT(<object_id>)

Typically these kind of high-level operations are not
unambiguously defined by the target object only, but
involve some decision about which strategy should be used
for executing the operation. For this purpose a specific
strategy selection sub-protocol has been defined with which
both the robot and the user collaborate in deciding which
strategy to use for the operation at hand.

The strategy selection dialogue is initiated from the robot
side with a request listing the possible strategies:

SELECT STRATEGY FOR <cmd_id> [<strategy_1>,
<strategy_2> ... <strategy_n>]

Then the user chooses a strategy and communicates her
decision with the command:

USE STRATEGY FOR <command_id> <strategy>

After the strategy has been selected the robot can actually
grab or drop the object.

Finally, note that the transmission of the video stream
from the robot camera is not defined as part of the command
protocol, as it happens on a separate channel using an ad-
hoc streaming protocol.

Within the second year of the Robot@CWE project we
implemented a subset of the full protocol described above,

namely the basic movement, goal-setting and object
grabbing sub-protocols. Also, in the current implementation
there is no command queue: if a new command arrives
before the previous one has completed, it is rejected.

A reference of all the commands currently defined in the
RCP protocol is shown in Table II.

VI. EXPERIMENTAL RESULTS

At the University Carlos III de Madrid a lunar scenario
was built to simulate the operation of a robotic agent
working in collaboration with a human in a space
environment. The task to be performed consists of
teleoperating the HOAP-3 robot, first walking through an
enclosed hall and finding an object, in this case an ‘antenna’,
then grasping the object and placing it in a different
location. For the teleoperation task, the communication
between the robot and the HMI is performed over a standard
wi-fi 802.11 network.

In order to evaluate the teleoperated system proposed in
this paper, several tests were conducted with the HOAP-3
robot. The robot walks in an enclosed corridor while being
teleoperated by a human agent. Trough the HMI the operator
sends walking and turning movement commands. Video
feedback from the robot cameras indicates to the operator
that the robot has located the ‘antenna’.

Fig. 7. a) the recreation of lunar scenario. b) HOAP-3 teleoperated through a
corridor looking for the ‘antenna’.

Then, the robot approaches the object to a close enough

distance so that it can grab it when requested by the human
operator.

Fig. 8. Robot HOAP grasping the ‘antenna’ a) the robot computes grasping
trajectories and receives a command by the operator. b) robot successfully
picks up the ‘antenna’.

Then the robot computes the best trajectory for the
grasping movement and performs accordingly to the
operator decisions.

Fig. 8 and Fig. 9 show the experimental setup for the

TABLE II
RCP COMMANDS

Sub-protocol Command

Connection CONNECT <profile>
DISCONNECT

Control
negotiation

CONTROL BEGIN

CONTROL END
Basic
movement

MOVE
<movement_type><direction><count><unit>
STOP
COMBINE <command>

Direct
command
execution

DIRECT <command>

Configuration QUERY PARAM <parameter_name>
SET <parameter_name> <parameter_value>

Sensor reading QUERY SENSOR [<label>,... , <label>]
Positioning QUERY POSITION

POSITION <x > <y > <confidence>
Notification tbd
Goal-setting GOTO OBJECT(<object_id>)

GOTO <x> <y>
Object
grabbing

GRAB OBJECT(<object_id>)
DROP OBJECT(<object_id>)

Strategy
selection

SELECT STRATEGY FOR <cmd_id>
[<strategy_1>, ..., <strategy_n>]
USE STRATEGY FOR <cmd_id > <strategy>

demonstration conducted with the proposed teleoperated
system. A human agent works collaboratively with a
humanoid robot by supervising, controlling and helping in
the decision taken by the robot.

Fig. 9. Demonstration of the proposed teleoperated system on a ‘lunar
scenario’ a) Robot HOAP-3 and a human operator work collaboratively on
finding and moving the ‘antenna’. b) The operator teleoperates the robot
with the HMI using a pocket PC.

VII. CONCLUSIONS

A teleoperation system for control of a humanoid robot
has been presented in this paper. A collaborative working
environment was demonstrated; using a lunar scenario a
humanoid robot and a human operator work together in
achieving a task.

Walking patterns for a humanoid robot have been
presented with different trajectories for forward, backward,
turn left and turn right movements, all tested on a HOAP-3
robot.

We have presented a HMI to help a human agent work
collaboratively with the robot. The HMI allows the operator
to give the robot direct actions commands like “grab and
object”, “go to a place”, etc. The HMI also gives the
operator feedback from the robot environment and the state
of the robot actions.

An RCP for the communication with the robot is
presented in this paper. The main goals of the protocol are
simplicity, generality, flexibility and expressiveness. The
RCP is a text-based protocol, is simple to understand and
debug. It is lightweight and general, meaning that it has not
been designed for a specific target robot, but for a generic
target robot described by a high-level robot model.

The system was tested on two different tasks. First the
robot walks in an enclosed corridor while being teleoperated
by a human agent using the developed HMI. For the second
task the robot recognizes an object which it grasps when
given the command by the operator.

Future works in space collaborative working
environments would include working in new tasks with the
robot like the construction of a space shelter. Further work
on the RCP and the HMI is also necessary to add more
features and functionalities to future applications.

REFERENCES
[1] P.C. Leger, A. Trebi-Ollennu, J.R. Wright, S.A. Maxwell, R.G.

Bonitz, J.J. Biesiadecki, F.R. Hartman, B.K. Cooper, E.T.
Baumgartner, M.W. Maimone, M.W., “Mars Exploration Rover
surface operations: driving spirit at Gusev Crater,” in IEEE
International Conference on Systems, Man and Cybernetics, Volume
2, pp. 1815-1822, Oct. 2005.

[2] J.J. Biesiadecki, E.T. Baumgartner, R.G. Bonitz, B. Cooper, F.R.
Hartman, P.C. Leger, M.W. Maimone, S.A. Maxwell, A. Trebi-
Ollennu, E.W. Tunstel, and J.R. Wright, “Mars exploration rover
surface operations: driving opportunity at Meridiani Planum,” in IEEE
Robotics & Automation Magazine, Volume 13, Issue 2, pp. 63–
71. June 2006.

[3] R.G. Bonitz, T.T. Nguyen and W.S. Kim, “The Mars Surveyor '01
Rover and Robotic Arm,” in IEEE Aerospace Conference Proceedings
2000, Volume 7, pp. 235-246, March 2000.

[4] R.O. Ambrose, H. Aldridge, R.S. Askew, R.S.; R.R. Burridge, W.
Bluethmann, M. Diftler, C. Lovchik, D. Magruder, F. Rehnmark,
“Robonaut: NASA's space humanoid,” in IEEE Intelligent Systems
and Their Applications, Volume 15, Issue 4, pp. 57–63, 2000..

[5] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M.
Hirata, K. Akachi, T. Isozumi, “Humanoid robot HRP-2,” in IEEE
International Conference on Robotics and Automation 2004, Volume
2, pp. 1083–1090. Apr 26-May 1, 2004.

[6] Ee Sian Neo, T. Sakaguchi, K. Yokoi, “A humanoid robot that listens,
speaks, sees and manipulates in human environments,” in IEEE
International Conference on Multisensor, Fusion and Integration for
Intelligent Systems, pp. 419–425, 20-22, Aug. 2008.

[7] K.Harada, S.Kajita, F.Kanehiro, K.Fujiwara, K.Kaneko, K.Yokoi,and
H.Hirukwa, “Real-Time Planning of Humanoid Robot’s Gait for Force
Controlled Manipulation,” in IEEE International Conference on
Robotics and Automation, 2004.

[8] Y. Sakagami, R. Watanabe, C. Aoyama, C.; S. Matsunaga, N. Higaki,
K. Fujimura, “The intelligent ASIMO: system overview and
integration,” in IEEE/RSJ International Conference on Intelligent
Robots and System, Volume 3, pp. 2478-2483, 2002.

[9] Y. Ogura, H. Aikawa, K. Shimomura, A. Morishima, Hun-ok Lim and
A. Takanishi, “Development of a new humanoid robot WABIAN-2,”
in International Conference on Robotics and Automation 2006, pp
76–81. 2006.

[10] S.-W. P. Ill-Woo Park, Jung-Yup Kim and I.-H. Oh, “Development of
humanoid robot platform KHR-2 (Kaist Humanoid Robot-2),” in
International Journal of Humanoid Robotics, vol. 2, no. 4. pp. 519-
536, 2005.

[11] R. Tellez, F. Ferro, S. Garcia, E. Gomez, E. Jorge, D. Mora, D. Pinyol,
J. Oliver, O. Torres, J. Velazquez and D. Faconti, “Reem-B: An
autonomous lightweight human-size humanoid robot,” in IEEE-RAS
International Conference on Humanoids 2008, pp. 462–468, 2008.

[12] P. Pierro, C. A. Monje and C. Balaguer, ”Modelling and Control of the
Humanoid Robot RH-1 for Collaborative Tasks,” in IEEE RAS/RSJ
Conference on Humanoids Robots, Daejeon, Korea, 2008, pp. 125–
131.

[13] S. Calinon and A. Billard. “PDA interface for humanoid robots,” in
IEEE International Conference on Humanoid Robots (Humanoids),
October 2003.

[14] T. Fong, C. Thorpe, and C. Baur. “Advanced interfaces for vehicle
teleoperation: collaborative control, sensor fusion displays, and remote
driving tools”. in Autonomous Robots, 11(1), pp. 77-85, 2001.

[15] T. Fong, C. Thorpe, and B. Glass. Pdadriver: “A handheld system for
remote driving,” in IEEE International Conference on Advanced
Robotics, 2003.

[16] S. Kajita, F. Kanehiro, K. Kaneko, et.al, “The 3D Linear Inverted
Pendulum Mode: A simple modeling for a biped walking pattern
generation, in IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp.239-246, 2001.

[17] C. Balaguer, R. Aracil, M. Ferre, M. Buss and C. Melchiorri,
Advances in Telerobotics, Springer Tracts in Advanced Robotics
(STAR), 2007.

[18] Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling,
Planning and Control, London, Great Britain, Springer-Verlag, 2009.

[19] S. Chiaverini and B. Siciliano, “The unit quaternion: A useful tool for
inverse kinematics of robot manipulators”, Systems Analysis
Modelling Simulation, vol. 35, pp. 45–60, 1999.

[20] L. Blasi, O. Stasse, Robot@CWE Deliverable D3.3@M22: Design
support software for ROBOT@CWE, Annex II.

