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In this paper, a perception and path planning architecture is presented for 

HOAP humanoid. The main goal of this study is to integrate several re-

searches in navigation and perception and create a full statement problem 

so the robot is able to interpret the surroundings with a RGB-D sensor and 

create a valid path planning to achieve the desired goal. 

1 Introduction 

If robots are going to share our living space, they should be able to move 

in clustered environments with reliability, avoiding fixed and moving ob-

stacles. Smart environments are an easy solution to this matter (Pierro, 

2012; Víctores, 2010; Coradeschi, 2006). The main objective of a smart 

environment is to reduce the complexity of a determined task and to help 

the robot to perform this task. First, by installing external cameras or sen-

sors, a global and more accurate view of the environment can be perceived. 

It can help the robot to free computational resources by eliminating the 

need of doing SLAM. Also, a smarter high-level action planning can be 

performed by anticipating the location of fixed or moving obstacles. Fur-

thermore, it reduces the dependence of the inner robot sensors. 

 

In this paper we present a framework to generate a safe path planning pat-

tern in a humanoid robot, by perceiving a complete 3D map of the envi-

ronment using an external RGB-D sensor, in the context of smart envi-

ronments. First, a 3D model of the environment is extracted by identifying 

the free space and non-dynamic obstacles. Using this model, a Bi-RRT 

path planning algorithm is computed to obtain a first safe path of the Cen-
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ter of Gravity (COG) of the robot. Using this preliminary solution and tak-

ing into account the dimensions of the robot, a Zero Moment Point (ZMP) 

patter is generated. Next, using the cart-table algorithm, we can compute 

the real COG trajectory which is used to generate the locomotion. 

 

The paper is ordered as follows. In section 2 the 3D model of the environ-

ment is obtained and the perception procedure is explained. In section 3 we 

address the path planning algorithm. In section 4 we discuss the proposed 

architecture. Finally, in section 5 we show the experimental results with a 

simulated and real robot and in section 6 we present the conclusions. 

2 Perception of the environment 

In this section will be explained all the theoretical principles used to inte-

grate the perception feature into the humanoid architecture. 

2.1 Environment perceptions 

The very first goal of the robot is to understand the surroundings in order 

to construct a valid path and therefore achieve successfully the desired 

goal. For this study, a RGB-D Asus Xtion Pro Live camera has been in-

stalled in the upper part of a room with a certain angle. The role of the 

camera is to acquire a valid model of the supporting plane (floor) and sub-

tract all the possible obstacles that could interfere during the path planning.  

 

The sensor provided by the RGB-D manufacturer is ready to detect indoor 

3D points where errors increase quadratic from a few millimeters at 0.5 m 

distance to about 4 cm at the maximum sensor range (Kourosh, 2012). The 

camera resolution is VGA (640 × 480 pixels) and output video frame rate 

may vary between 25 and 30 Hz. Camera provides for each frame a depth 

map, color map and infrared map. Infrared information has been used on 

previous researches to fix lens distortions and other optical aberrations by 

means of chessboard borders detection (Bouguet, 2008) but for this project 

the standard distortion matrix will be used to simplify the problem and 

therefore only color and depth sources are used to determine the architec-

ture of the surroundings. 

 

The complete camera flow acquisition is programmed using OpenNI li-

brary (OpenNI, 2012) while cloud operations are done using Point Cloud 
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Library (Rusu, 2009) with adhoc interface for the visualization. All the ar-

chitecture follows a modular structure to facilitate the addition of new fil-

ters or improvements. 

2.1.1 Down-sampling the data 

Camera provides approximately 8M points per second that have to be 

managed somehow. Due to the significant amount of data that has to be in-

terpreted, it is necessary to reduce the order of magnitude rejecting points 

in order to let the robot react in real time. In this case, a VoxelGrid filter 

approach is used. A VoxelGrid represents a small 3D box in space. All the 

points inside a VoxelGrid are approximated to the centroid reducing the 

amount of data. The bigger the VoxelGrid, the smaller the data obtained 

and so the faster the operations (see Fig.1). 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.1. Down-sampling the point cloud using voxelgrids at different sizes.  Leaf 

sizes are 0.005m, 0.01m, 0.05m and 0.08m respectively 

2.2 Supporting Plane Extraction 

In order to determine the surrounding obstacles, the robot has to be able to 

differentiate between floor and non-floor objects. This distinction has to be 
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done using depth map perception and 3D constraints. In this study, nor-

mals extraction is first performed and then the supporting plane is ac-

quired.  

 

2.2.1 Normals computation 

Surface normals are very useful to understand the geometry of the surface 

and also to reconstruct and understand the point cloud. Normal extraction 

means estimating the normal of a plane tangent to the surface. This process 

can be as simply as computing the cross product between a pair of nearest 

points for any query point. This technique is not recommended for noisy 

point clouds because results are inconsistent and extremely variable (Ta-

mal, 2005).  

 

In this paper, normal extraction has been stated as a least-square plane fit-

ting estimation problem. With the analysis of the eigenvectors and eigen-

values of a covariance matrix C created from the nearest neighbors to the 

query point, it is possible to determine the surface normal 

 

1

·( ·
1

( ) ) , {0· , ,, 1 2}T

i i j j j

k

i

p v vC p jp p C
k




      

 

where j represents the j-th eigenvalue and jv is the j-th eigenvector ofC . 

Normals orientation is solved applying the viewpoint constraint given by  

 

·( ) 0i p ivn p   

 

Taking in mind that the primary surface direction is given by the third ei-

genvector 

3in v   

2.2.2 Plane estimation 

 

Once the normal point cloud is computed for each frame, next step is to 

determine the plane which fits better in the point cloud. To perform this 

operation  RANSAC (Random Sample Consensus) has been applied with a 
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geometric model of a plane. RANSAC will iterate over the whole point 

population and estimate the parameters of the most suitable plane. To do 

this, the method distinguishes between inliers (points that fit the model) 

and outliers (points outside the model) iteratively. For this study, 70% of 

points are required to be part of the floor and the rest are supposed to be 

obstacles.  

 

 

The output of the plane estimation are the classical four parameters that 

generates a plane equation 

 

0Ax By Cz D     

 

With this information in mind, it becomes straightforward to split up the 

original depth map into two maps: the first one containing points inside the 

supporting plane and the other one gathering all the obstacles around the 

robot.  

2.3 Clustering Segmentation 

 

The last step in the perception architecture consists on converting the out-

liers of the previous section into bounding boxes. Those groups are then 

introduced into the path planning algorithm as geometric constraints. In 

order to track each obstacle, a clustering process is performed.  

 

2.3.1 Euclidean Clustering 

This algorithm is based on K-means using a Kd-tree to boost the perfor-

mance of the process. It is similar to flood-fill algorithm in image pro-

cessing. The followed steps are stated in the following algorithm. 

 

EUCLIDEAN CLUSTERING 

1. input point cloud data set P  

2. build Kd-tree ( P ) 

3. empty list of clusters C   

4. empty queue of points to be checked Q  
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5. for each ip in P  

 add ip to Q  

 for each ip in Q  

 
k

iP  = search 
k

ip of neighbours of ip with thresholdr r  

   for each
k

ip in 
k

iP  

      if not Q contains
k

ip  

        
k

iQ p  

              C Q  

6. check ip inC  

3 Biped locomotion generation 

We used the cart-table model (Kajita, 2003) to generate the gait. This 

model is based on ZMP a preview control scheme to obtain the COG tra-

jectory from a defined ZMP trajectory. This method generates a dynami-

cally stable gait trajectory using the 3D Linear Inverted Pendulum Model 

(Kanehiro, 2001) to approximate the dynamics of the humanoid.  

 

The relationship between ZMP trajectory and center of gravity (COG) tra-

jectory is defined using the following equations 
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Where xp is the ZMP reference, x is the COG trajectory, x represents the 

COG acceleration, cz the COG height and g the gravity. 
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Fig.2. Cart table model in sagital plane 

 

 

In cart table model (Fig. 2), the cart mass corresponds to the center of mass 

of the robot. If the cart accelerates at a proper rate, the table can be upright 

for a while. At this moment, the moment around xp  is equal to zero, so the 

ZMP exists. 

 

( ) 0ZMP x cmg x p mxz      

3.1 Path Planning 

Two of the most successful algorithms include Probabilistic Roadmap 

Method (PRM) (Kavraki, 1996) and Rapidly-exploring Random Tree 

(RRT) (LaValle, 1998). We used the Rapidly-Exploring Random Trees 

Algorithm. Bi-directional RRTs (Kuffner, 2000). 

 

The Rapidly-exploring Random Tree (RRT) was introduced in (LaValle, 

1998) as an efficient data structure and sampling scheme to quickly search 

high-dimensional spaces that have both algebraic constraints (arising from 

obstacles) and differential constraints (arising from non-holonomy and dy-

namics).  

 

The key idea is to bias the exploration toward unexplored portions of the 

space. In the current paper, we present an approach that is tailored to prob-

lems in which there are no differential constraints, and the problem can be 
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expressed in C-Space. The basic RRT construction algorithm is explained 

in Fig. 3. 

 

 

 
 

Fig.3. Process of RRT-Connect merging two RRT trees 

 

 

 

As illustrated in Fig.3, the RRT-Connect works by extending and connect-

ing two trees toward each other. Two trees ( aT  and bT ), rooted at two dif-

ferent milestones ( aq and bq ), either be local tree or global tree, are main-

tained at all times until they are connected to each other and merged into 

one single RRT. 

 

At every time step, a random configuration randq  is sampled inside the free 

space freeC . The EXTEND function determines the nearest configuration 

of randq  in the current tree aT , denoted as nearq . After that, aT  extends in 

the direction of nearq  for one step, generating a new configuration newq , us-

ing a fixed incremental distance.  
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From this point three situations can occur:  

 

1. Reached: new randq q and the configuration is directly added to the 

tree because it already contain a vertex within a fixed distance of 

randq  

2. Advanced: new randq q and it is added to the tree 

3. Trapped: new configuration is rejected because it does not belong to 

the free space freeC . 

 

At the same time, a tree bT starts to grow from the goal configuration bq . 

The other tree bT  uses another procedure called CONNECT to extend to-

ward newq as much as possible. The CONNECT procedure is a greedy 

function that can be considered as an extension of the EXTEND function. 

Instead of attempting to grow towards the sample randomq , it iterates the 

EXTEND function towards newq , until a configuration is reached or there 

is an obstacle.  

 

If the bT can successfully reach newq , the two trees are connected and 

merged into one single RRT. It is all explained in the following algo-

rithms. 
 

 

EXTEND ( ,T q ) 

1. . ( , )nearq Nearest Neighbour q T  

2. if new_config ( , ,near newq q q ) then 

  add_vertex ( newq ) 

        add_edge ( , enear n wq q ) 

 if newq q  then 

    return reached 

else 

   return advanced 

3. return trapped 
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BUILD RRT 

1. init ( )initT q  

2. for 1k  to K do 

 .randq Rnd Cfg  

        extend( , randT q ) 

3. return T  

 

 

CONNECT ( ,T q ) 

1. do 

S extend( ,T q ) 

2. until not ( S advanced)  

3. return S  

 

 

RRT CONNECT PLANNER ( ,init goalq q ) 

1. init ( )a initT q , ( , )init alb goT q q  

2. for 1k  to K do 

 .randq Rnd Cfg  

        If not extend( , na ra dT q ) == trapped then 

            If connect( ,b newT q ) == reached then 

     Return path( ,a bT T ) 

 swap( ,a bT T ) 

3. return failure 

 

 

In every iteration, one tree is extended to the new configuration newq and 

the other attempts to connect its nearest branch to the other tree reach-

ing newq . Then, the roles are reversed by swapping the trees. This causes 

both trees to explore the free space while attempting to connect each other 
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4 Proposed architecture 

In Fig. 4 a representation of the complete system is presented. The location 

of the RGB-D sensor is selected to cover the working from the top-view 

upper part of the room.  

 

The first step is to extract the supporting plane equation from the Point 

Cloud. Afterwards, the objects are identified using Euclidean Clustering 

Algorithm, and the equation of the bounding box containing each object is 

obtained. The plane coefficients and the bounding box of every object and 

its position are written to a xml file, which defines the 3D model of the en-

vironment.  

 

 
Fig.4. Schema of the proposed architecture. The output of each step is represented 

within the arrows. 

 

 

We select the initial and final position of the walking trajectory, which in 

addition to the 3D model of the environment, is the input to the Bi-RRT 

algorithm. The result of this path planning is a preliminary cartesian COG 

trajectory ˆ
COGX . The output of the Bi-RRT algorithm can be seen in the 

following Fig. 5. The initial point is located near the bottom of the scenario 

and the final point is near the front door. To configure the free space, the 

Bi-RRT algorithm not only takes into account the data of the xml file, but 

also the dimensions of the robot plus a security quantity.  
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Fig.5. Top-view schema of the complete scenario with obstacles in dark gray, 

global path planning represented by the dotted line, steps plotted as blue boxes and 

finally COG path shown with a red thin line. 

 

 

Finally, from the cartesian COG trajectory COGX , the articular trajectory of 

every humanoid joint q  can be computed, using a kinematic inversion.  

 

5 Experimental results 

 

In this section the experimental results are presented and discussed. In 

Fig.6 a simulation of the environment is shown using OpenRAVE (Di-

ankov, 2010). Objects identified by the Asus camera are represented as 

light grey boxes. The first one is ahead the robot, and the second one is to 

its right. The floor is represented in dark grey. The rest of the environment 

have been manually introduced and is irrelevant to the experiment. The 

yellow dotted line represents the field of view of the RGB-D camera in-

stalled in the upper part of the scenario. 
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Fig.6. Simulation of the environment with bounding boxes representing obstacles 

detected by the RGB-D sensor. Yellow dotted line represents the field of view of 

the RGB-D sensor. 

 

The result of the path planning algorithm integrating the data obtained with 

the perception sensor is successfully represented in Fig.7 where the 

HOAP’s head represents the COG of the complete robot and the plotted 

trajectory the final COG path estimation. 

 

 
Fig.7. Path planning COG result plotted in OpenRave. HOAP head represents the 

COG of the complete robot. 
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In Fig. 8 a group of snapshots of the real humanoid performing the naviga-

tion is shown. The robot performs a safe locomotion trajectory avoiding 

the obstacles in the environment. 

 

Fig.8. Several frames representing the real performance of the robot path planning 

in the laboratory. The black bucket is one of the obstacles avoided. 

6 Conclusions 

In this paper we present a humanoid robot performing a safe path planning 

in a cluttered environment. Instead of using the cameras of the robot to 

create a model of the environment, we used an external fixed camera.  The 

RGB-D sensor is located in a position where a large area of the environ-

ment can be analyzed. We obtained a 3D model of the floor and the obsta-

cles to define the free space using a perception technique that includes a 

supporting plane extraction and object clustering. Once the 3D model of 
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the environment has been computed, a safe path using Bi-RRTs has been 

planned.  

 

This trajectory, which has into account the shape of the humanoid, is used 

to calculate the ZMP trajectory of the robot. Using the cart-table algorithm, 

we obtain the humanoid COG trajectory, which allows the computation of 

the locomotion pattern. The result is a safe locomotion trajectory that al-

lows the robot to avoid obstacles. 

 

6.1 Future directions 

The next step towards a more autonomous and robust path planning can be 

a combination of external sensors with the cameras integrated in the robot. 

Using this combination, a more accurate model of the environment can be 

extracted and can even avoid moving obstacles. One of the problems of us-

ing the cameras located in the eyes of the robot is the swing movement that 

appears when the robot is moving. The cameras that suffer from a cuasi-

horizontal movement produce a blurry image. This image has to be treated 

before it can be used. A solution to this can be a camera stabilizer algo-

rithm like (Mateo, 2010). 

References 

Bouguet, J. Y. (2008). Camera Calibration Toolbox for Matlab. Available 

from http://www.vision.caltech.edu/bouguetj/calib/doc/index.html 

 

Coradeschi, S.; Saffiotti, A. (2006) Symbiotic Robotic Systems: Humans, 

Robots, and Smart Environments, Intelligent Systems, IEEE , vol.21, no.3, 

pp.82-84. doi: 10.1109/MIS.2006.59 

 

R. Diankov, Automated Construction of Robotic Manipulation Programs 

(2010) PhD. Thesis Carnegie Mellon University, Robotics Institute. 

 

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and 

H. Hirukawa. Biped walking pattern generation by using preview control 

of zero-moment point (2003). In Robotics and Automation,. Proceedings. 

ICRA’03. IEEE International Conference, vol. 2. IEEE, pp. 1620–1626. 

 



16      Interacción Persona-Robot 

L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, (1996) Probabil-

istic roadmaps for path planning in high-dimensional configuration spac-

es, IEEE Trans. Robot. & Automat., pp. 12(4):566–580. 

 

F. Kanehiro, K. Kaneko, K. Yokoi, H. Hirukawa, and S. Kajita, (2001) , 

The 3d linear inverted pendulum mode: A simple modeling for a biped 

walking pattern generation, in Proceedings of the IEEE Conference on In-

telligent Robots and Systems, pp.239–246. 

 

J.J. Kuffner and S.M. LaValle (2000), RRT-Connect: An efficient ap-

proach to single query path planning. In Proc. IEEE Int Conf. on Robotics 

and Automation (ICRA‘2000), pp. 995–1001, San Francisco, CA, April 

2000. 

 

Kourosh Khoshelham, Sander Oude Elberink. (2012), Accuracy and Reso-

lution of Kinect Depth Data for Indoor Mapping Applications. Sensor, 12, 

pp.1437–1454. 

 

S. M. LaValle. (1998) Rapidly-exploring random trees: A new tool for 

path planning. Pp. 98–11, Computer Science Dept., Iowa State Univ. 

 

A.P.Mateo, M.G.Fierro, D.Hernandez, P.Pierro, C.Balaguer, (2010) , 

Robust Real Time Stabilization: Estabilización de la imagen con aplica-

ción en el robot humanoide HOAP-3.7º Wokshop Robocity2030. Visión 

en robótica. Madrid. 

 

OpenNI (2012), The largest 3D sensing development framework and 

community. http://www.openni.org 

P.Pierro, D.Hernandez, D.Herrero, M.G.Fierro, C.Balaguer. (2012) Per-

ception System for Working with Humanoid Robots in Unstructured 

Collaborative Scenarios. Proceedings of the 2012 International IEEE 

Intelligent Vehicles Symposium. Workshops V Perception in Robotics. 

Alcalá de Henar. Spain. 

Radu, B. R. (2009), Semantic 3D Object Maps for Everyday Manipula-

tion in Human Living Environments. PhD Thesis. 

 



A COMPLETE 3D PERCEPTION AND PATH PLANNING ARCHITECTURE 
FOR A HUMANOID      17 

Tamal K. Dey, Gang Li, Jian Sun. (2005), Normal Estimation for Point 

Clouds: A Comparison Study for a Voronoi Based Method. Eurographics 

Symposium on Point-Based Graphics, Ohio State Univ., Columbus, OH, 

USA pp.39–46. 

 

J.G.Víctores; A.Jardón; M.F.Stoelen; S.Martínez; C.Balaguer, (2010) 

ASIBOT Assistive Robot with Vision in a Domestic Environment. Roboci-

ty2030 7th Workshop. Móstoles. Spain. Oct, 2010. Visión en Robótica. 

ISBN: 84-693-6777-3. Universidad Rey Juan Carlos. pp.61-74.  

 

 

 

 

 


